Как определить процент от числа формула

Ответы на вопросы по теме: "Как определить процент от числа формула" с комментариями профессионалов для людей. Актуальность данных на 2020 год можно уточнить у дежурного специалиста.

Что такое процент и как его найти

Что такое процент?

1 процент — это сколько?

— это сотая доля числа. Обозначается знаком «%». Является способом выразить число как часть целого.

Предположим, на столе лежит один пирог. Его мы разделим на 100 одинаковых частей.

Один кусочек из ста — это сотая доля пирога, что есть

  • в виде обыкновенной дроби: 1 100 ,
  • в виде десятичной дроби: 0,01,
  • в процентах: 1% от пирога.

25 процентов — это сколько?

25 кусочков — это четверть пирога или 25%.

50 процентов — это сколько?

50 кусочков — это половина пирога или 50%.

Уменьшить на 50% — значит уменьшить число в 2 раза.

100 процентов — это сколько?

Весь пирог — это один пирог или 100%.

Увеличить на 100% — значит увеличить число в 2 раза.

150 процентов — это сколько?

Один целый пирог и ещё половина другого — это полтора пирога или 150%.

200 процентов — это сколько?

Два пирога — это 200%.

200% от числа — значит увеличить число в 2 раза.

Увеличить на 200% — значит увеличить число в 3 раза.

Калькулятор процентов

Используя калькулятор процентов Вы сможете производить всевозможные расчеты с использованием процентов. Округляет результаты до нужного количества знаков после запятой

Сколько процентов составляет число X от числа Y. Какое число соответствует X процентам от числа Y. Прибавление или вычитание процентов из числа.

Калькулятор разработан специально для расчета процентов. Позволяет выполнять разнообразные расчеты при работе с процентами. Функционально состоит из 4-х разных калькуляторов. Примеры вычислений на калькуляторе процентов смотрите ниже.

Калькулятор процентов Добавить в Избранное
Сколько составляет % от числа
0% от числа 0 = 0
Сколько % составляет число от числа
Число 0 от числа 0 = 0%
Прибавить % к числу
Прибавить 0% к числу 0 = 0
Вычесть % из числа
Вычесть 0% из числа 0 = 0
Округлять до знаков после запятой Сбросить все

Примеры вычислений на калькуляторе процентов

Какое число соответствует 23 % от числа 857 ?
Итог — 197.11
Как вычислять:
Получаем коэффициент — 857 / 100% = 8.57.
Получаем итоговое число — 8.57 x 23% = 197.11

Сколько процентов составляет 24 от числа 248 ?
Итог — 9.677 %
Как вычислять:
Получаем коэффициент — 248 / 24 = 10.333
Получаем проценты — 100% / 10.333 = 9.677 %

Прибавить 35% к числу 487 ?
Итог — 657.45
Как вычислять:
Получаем коэффициент — 487 / 100 = 4.87
Получаем число равное 35% — 4.87 x 35 = 170.45
Получаем итоговое число — 170.45 + 487 = 657.45

Вычесть 17% из числа 229 ?
Итог — 190.07
Как вычислять:
Получаем коэффициент — 229 / 100 = 2.29
Получаем число равное 17% — 2.29 x 17 = 38.93
Получаем итоговое число — 229 — 38.93 = 190.07

Как это сделать?

Полезные советы для Вас

Как найти процент от числа?

Posted on Сентябрь 27, 2017 by Елена Прекрасная in Дом // 0 Comments

Как найти процент от числа? Общее правило такое. Чтобы найти процентную часть числа, нужно:

1. Число разделить на 100. Почему на 100? Потому что процент — это одна сотая часть числа. И для того, чтобы найти несколько процентов, для начала нужно найти 1 %( процент). Число мы делим на 100 и таким образом мы находим 1%(процент) числа.

2. Получившийся результат умножить на количество процентов. Таким образом мы увидим какую часть от числа мы искали.

Как найти процент от числа?

Давайте разберем это на конкретных примерах:

1. Вычислить 5% от числа 60. Найдем 1 %, итак число 60 нам нужно разделить на 100 (60: 100= 0,6). Теперь 0,6 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 5%. Просто умножаем 6*5 =30 , в результате нужно отделить запятой один знак, потому что в множителях стоит один знак после запятой, поэтому 0,6*5= 3

Как найти процент от числа?

Как найти процент от числа?

2. Вычислить 15% от числа 30. По той же схеме 30_100= 0,3. Теперь 0,3 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 15%. Просто умножаем 3*15 =45, но нам нужно отделить запятой 1 цифру. Поэтому 0,3*15= 4,5

3. Вычислить 75% от числа 150. По той же схеме 150_100= 1,5. Теперь 1,5 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 75%. поэтому Для того что бы умножить эти 2 числа нужно отбросить все запятые и просто умножить 15 *75= 1125. Теперь в результате нужно отделить запятой столько цифр, сколько в обоих множителях в сумме. В обоих множителях у нас одна цифра. То есть только 5 в числе 1,5. Поэтому запятую мы двигаем тоже на одну цифру 1,5*75= 112,5.

Калькулятор процентов

На этой странице мы предлагаем калькулятор процентов, который позволит ответить на такие вопросы:

  • вычесть x% из числа или прибавить x% к числу;
  • сколько составляет x% от заданного числа;
  • сколько процентов составляет одно число от другого.

Нахождение процентов простая задача, но даже её можно значительно упростить с помощью онлайн-калькулятора.

Калькулятор процентов онлайн

Как посчитать процент от числа

Лучше всего на этот вопрос ответить на конкретном примере. Давайте найдём 23 процента от числа 327. Для этого необходимо 327 умножить на 23 и результат поделить на 100. Получим:

(327 * 23) / 100 = 75,21

Получим ответ: 75,21

С точки зрения математики, данная задача сводится к пропорции (см. рисунок).

Как найти процент от числа на калькуляторе

Кнопка для вычисления процентов

Давайте научимся находить процент от числа с помощью калькулятора. Для начала убедитесь, что он способен это делать. Для этого найдите на его клавиатуре кнопку с изображением процента (%).

Читайте так же:  Решение комиссии по индивидуальным трудовым спорам

Найдём сколько составляют 17 процентов от числа 123.

  1. вводим число 123 на калькуляторе;
  2. нажимаем клавишу умножить (Х);
  3. вводим 17;
  4. нажимаем клавишу с изображением символа процента (%);
  5. получаем на экране калькулятора ответ 20,91.

По аналогии можно найти любые другие проценты от любого числа.

Сколько процентов составляет число от числа

Узнаем сколько процентов составляет число 60 от числа 300. Для этого надо 60 умножить на 100 и поделить на 300.

(60 * 100) / 300 = 20%

Для нахождения сколько процентов число X составляет от числа Y можно использовать формулу (см. рисунок)

Вычисление исходного числа по известному проценту от числа

Формула вычисления числа по его проценту.

Если дано число B которое составляет P процентов от числа A и необходимо найти значение числа A, то

Примеры вычисления исходного числа по известному проценту от числа

40 · 100% = 800
5%
270 · 100% = 900
30%

Ответ: На заводе работает 900.

1000 · 100% = 10000
10%

Ответ: на депозит необходимо положить 10000 рублей.

При изучении процентов вам также будут полезны:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Задачи на проценты. Как найти процент от числа. Исчерпывающий гид. (2020)

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Знаю: наверняка ты терпеть не можешь слово «процент». Но это чувство у тебя скоро исчезнет. Чтобы это произошло, разберем такой вопрос:

Что такое процент?

Откуда взялось это слово?

Все очень просто. Слово процент произошло от латинского per cent– на сотню, и означает оно «сотая доля» или «сотая часть». То есть один процент любого числа – это одна сотая этого числа.

И все. Этого достаточно, чтобы решать задачи, в которых присутствует это противное слово «процент».

Например: чему равны от числа ?

Прочтем это задание по-другому: чему равны сотых доли числа ? Элементарно, правда? Нужно разделить число на частей (чтобы узнать, чему равна одна сотая доля – один процент) и взять таких части:

Сколько процентов содержится в числе?

Снова перефразируем вопрос, заменив слово «процент» на «сотую часть»: Сколько сотых частей находится в числе? Ответ сразу становится очевидным: в любом числе или предмете находится ровно сто сотых частей (то есть, если разделить число или предмет на частей, сколько будет этих частей? Очевидно же, что ).

Разберем еще несколько примеров.

  1. Чему равны от числа ?
  2. Чему равно число, которого равны ?
  3. Сколько процентов составляет число от числа ?

Решения:

1) И снова избавимся от слова «процент». Получим такой вопрос:

Чему равны сотых числа ?

Может показаться странным, что у нас целых – ведь мы уже выяснили, что в числе всего . Но с математической точки зрения ничего странного, ведь процент – это всего лишь одна сотая от числа. Почему нельзя одну сотую числа взять раз? Можно, ведь по сути это – просто число.

2) Итак, от числа равны . Можем составить простенькое уравнение:

Ты заметил, что я сразу же вместо написал ? И правда, один процент – это одна сотая, а значит, процентов – это сотых. Ты можешь тоже так делать.

3) Обозначим искомое количество процентов буквой . Тогда от числа равно . Или, что то же самое, сотых от числа равно :

Проценты и десятичные дроби

В разобранных выше примерах мы убедились, что вместо знака процента % можно писать , или просто разделить на . То есть, – это то же самое, что ; – это и так далее. Но ведь любую из этих дробей можно записать компактнее: в виде десятичной дроби.

Например:

Значит, проценты можно записать в виде десятичной дроби.

Правило перевода такое: сколько бы ни было процентов, смещаем десятичную запятую на два знака влево и убираем значок % – и таким образом получаем обычное число. Данное правило будем теперь всегда применять сразу.

Например:

1) Чему равны от числа ?

Вместо напишем что? . Итак, .

[2]

2) от какого числа равны ?

Изменение числа на сколько-то процентов

Когда говорят, что число увеличилось на , это значит, что к числу надо прибавить .

Если же число уменьшилось на , это значит, что из числа надо вычесть .

Рассмотрим пример:

Цена холодильника в магазине за год увеличилась на . Какой стала цена, если изначально холодильник стоил р?

Решение:

Для начала определим, на сколько рублей изменилась (в данном случае – увеличилась) стоимость холодильника. По условию – на . Но от чего? Конечно же, от самой начальной стоимости холодильника ( р). Получается, что нам нужно найти от р:

Теперь мы знаем, что цена увеличилась на р. Остается только, согласно правилу, прибавить к начальной стоимости величину изменения:

Новая цена рублей.

Еще пример (постарайся решить самостоятельно):

Книга «Математика для чайников» в магазине стоит р. Во время акции все книги продаются со скидкой . Сколько теперь придется заплатить за эту книгу?

Решение:

Что такое скидка, ты наверняка знаешь? Скидка в означает, что стоимость товара уменьшили на .

На сколько уменьшилась стоимость книги (в рублях)? Нужно найти от начальной ее стоимости в р:

Цена уменьшилась, значит нужно из начальной стоимости вычесть то, на сколько она уменьшилась:

Новая цена рублей.

Видео (кликните для воспроизведения).
Читайте так же:  Как можно срочно получить загранпаспорт

Правда ведь просто?

Но есть способ сделать это решение еще проще и короче!

Рассмотрим пример:

Увеличьте число на .

Чему равны от ? Как мы уже выяснили раньше, это будет .

Теперь увеличим само число x на эту величину:

Получается, что в результате мы к десятичной записи прибавили и умножили на число . Обобщим это правило:

[1]

Пусть нам нужно увеличить число на .

Тогда новое число будет равно: .

Чтобы увеличить число на , нужно умножить его на .

Например, увеличим число на :

А теперь попробуй сам:

  1. Увеличить число на
  2. Увеличить число на
  3. На сколько процентов число больше числа ?

Решения:

3) Пусть искомое количество процентов равно . Это значит, что если число увеличить на , получится :

Если число x надо уменьшить на , все аналогично:

Уменьшить число на какую-то величину – значит вычесть из него эту величину:

Чтобы уменьшить число на , нужно умножить его на .

Примеры:

1) Уменьшить число на .

2) На сколько процентов число меньше числа ?

3) Цена товара со скидкой в равна р. Чему равна цена без скидки?

Решения:

2) Число уменьшили на x процентов и получили :

3) Пусть цена без скидки равна . Получается, что x уменьшили на и получили :

Напоследок рассмотрим еще один тип задач, частенько вызывающих недоумение:

Число больше числа на . На сколько процентов число меньше числа ?

Что за странный вопрос: конечно же на ! Правильно?

А вот и нет. Если, например, масса одного шкафа на 25 кг больше массы другого, то, без сомнения, масса второго шкафа на 25 кг меньше массы первого. Но с процентами так не прокатит! Ведь в первом случае, когда говорим, что число на больше числа , мы считаем от числа ; а во втором случае, когда говорим, что число на меньше числа , мы считаем от числа . А поскольку числа и разные, то и от этих чисел будут разными!

Чтобы решить эту задачу верно, давай запишем условие в виде уравнения:

Число больше числа на . Это значит, что если число увеличить на , получим число :

Теперь в таком ж виде запишем вопрос: если число a уменьшить на процентов, получим число :

Выразим число из равенства (1):

И подставим в (2):

Отсюда следует, что:

Итак, получаем, что число на меньше числа !

Подобные задачи часто попадаются в ЕГЭ.

Например:

В понедельник акции компании подорожали на некоторое число процентов, а во вторник подешевели на то же самое число процентов. В результате они стали стоить на дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Решение:

Пусть цена акции в понедельник была равна , а искомое количество процентов, записанное в виде десятичной дроби (то есть, уже поделенное на ), равно .

Запишем формулой, чему равна стоимость акции после подорожания:

Далее, эту новую стоимость уменьшили на процентов:

При этом известно, что эта конечная цена на меньше начальной цены . То есть, если уменьшить на , получим :

Подставим , выраженное ранее:

Согласно здравому смыслу подходит только положительное решение:

Вспомним теперь, что это пока только десятичная запись искомого количества процентов, то есть это количество процентов, деленное на . Чтобы перевести в проценты, нужно домножить на 100%:

Где мы используем проценты в жизни?

Чаще всего мы их видим в банковских продуктах: вкладах, кредитах и т.д.

Если ты хорошо понимаешь, что такое проценты, и умеешь решать уравнения, то ты без труда расчитаешь, например, размер ежемесячного платежа по кредиту или сколько придётся переплатить, взяв ипотеку.

Такая задача есть в ЕГЭ под номером 17.

Но в жизни люди не любят считать сами и пользуются программами-калькуляторами для рассчета ипотечного кредита, которые делают точные расчёты автоматически.

Теперь ты можешь обойтись без них.

Заключение

Ну что же, теперь подведем итоги:

· Процент – это сотая часть, или одна сотая

· Решая задачи на проценты, старайся сразу избавляться от знака %, переводя проценты в десятичную дробь – число процентов нужно разделить на .

· Пользуйся упрощенными формулами, когда нужно увеличить или уменьшить число на сколько-то процентов: нужно домножить число на , если ты увеличиваешь его на , и на , если уменьшаешь.

Проценты – это легко! Удачи!

ПРОЦЕНТЫ. КОРОТКО О ГЛАВНОМ

Один процент любого числа – это одна сотая этого числа.

1. Проценты и десятичные дроби

2. Изменение числа на сколько-то процентов

Допустим, нужно увеличить число на .

Тогда, новое число будет равно: .

Чтобы увеличить число на , нужно умножить его на .

Если число надо уменьшить на , то :

Уменьшить число на какую-то величину – значит вычесть из него эту величину:

Чтобы уменьшить число на , нужно умножить его на .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER

Получить доступ к учебнику YouClever без ограничений можно кликнув по этой ссылке:

Что такое процент?

Одним из базовых понятий математики является процент. Для того чтобы понять, что такое процент, достаточно разделить заданную целую величину на сто. Одна сотая часть будет одним процентом (обозначается 1%). Как в точных и экономических науках, так и в других сферах жизни проценты используются для обозначения долей по отношению к целому. При этом само целое обозначается как 100%. В некоторых случаях используется при сравнении двух величин: например, иногда стоимость товаров не сравнивается в денежных единицах, а оценивается, на сколько % цена одного товара больше или меньше цены другого. Термин также получил широкое распространение в банковском деле и в большинстве случаев используется в качестве синонима словосочетания «процентная ставка».

Правило нахождения процентов от числа

Вычисление процентных долей от целого – одна из основных математических операций, к тому же часто используемая в повседневной жизни. Правило нахождения процентов от числа гласит о том, что для решения такой задачи его необходимо умножить на указанное в условиях количество %, после чего полученный результат разделить на 100. Также можно разделить число на 100, и полученный результат умножить на заданное количество %. Важно помнить ещё один тезис: если заданный условиями процент превышает 100%, то полученное числовое значение всегда больше исходного (заданного) – и наоборот.

Читайте так же:  Арест имущества по гражданскому иску

Правило нахождения числа по его проценту

Существует обратное правило нахождения числа по его проценту. Для того чтобы получить результат по такой математической операции (второму из трёх базовых типов задач на процентные вычисления) необходимо указанное в условиях число разделить на заданную процентную величину, после чего полученный результат умножить на 100. При этом первым действием вычисляется количество единиц исходной величины в 1%, а вторым – в целом (то есть в 100%). Если количество % превышает 100, то полученный результат всегда будет меньше числового значения, заданного условиями задачи – и наоборот.

Правило нахождения процентного выражения числа от другого

Третьим базовым типом математических задач на процентные вычисления являются такие задания, в которых необходимо использовать правило нахождения процентного выражения числа от другого (или соотношения двух величин). Оно гласит о том, что для решения необходимо второе число разделить на первое, после чего полученный результат умножить на сто. Подобное соотношение показывает, сколько % одно числовое значение составляет от другого (то есть, фактически речь идёт об отношении между двумя числовыми значениями, выраженном в %).

Как посчитать проценты: от числа, от суммы чисел и др. [в уме, на калькуляторе и с помощью Excel]

Доброго времени суток!

Проценты, скажу я вам, это не только что-то «скучное» на уроках математики в школе, но еще и архи-нужная и прикладная вещь в жизни (встречаемая повсюду: когда берете кредит, открываете депозит, считаете прибыль и т.д.). И на мой взгляд, при изучении темы «процентов» в той же школе — этому уделяется чрезвычайно мало времени ( ).

Возможно, из-за этого, некоторые люди попадают в не очень приятные ситуации (многие из которых можно было бы избежать, если бы вовремя прикинуть что там и как. ).

Собственно, в этой статье хочу разобрать наиболее популярные задачи с процентами, которые как раз встречаются в жизни (разумеется, рассмотрю это как можно на более простом языке с примерами). Ну а предупрежден — значит вооружен (думаю, что знание этой темы позволит многим сэкономить и время, и деньги).

И так, ближе к теме.

Как посчитать проценты: примеры

Вариант 1: расчет простых чисел в уме за 2-3 сек.

В подавляющем большинстве случаев в жизни требуется быстро прикинуть в уме, сколько там это будет скидка в 10% от какого-то числа (например). Согласитесь, чтобы принять решение о покупке, вам ненужно высчитывать все вплоть до копейки (важно прикинуть порядок).

Наиболее распространенные варианты чисел с процентами привел в списке ниже, а также, на что нужно разделить число, чтобы узнать искомую величину.

  • 1% от числа = разделить число на 100 (1% от 200 = 200/100 = 2);
  • 10% от числа = разделить число на 10 (10% от 200 = 200/10 = 20);
  • 25% от числа = разделить число на 4 или два раза на 2 (25% от 200 = 200/4 = 50);
  • 33% от числа ≈ разделить число на 3;
  • 50% от числа = разделить число на 2.

Задачка! Например, вы хотите купить технику за 197 тыс. руб. Магазин делает скидку в 10,99%, если вы выполняете какие-нибудь условия. Как это быстро прикинуть, стоит ли оно того?

Пример решения. Да просто округлить эти пару чисел: вместо 197 взять сумму в 200, вместо 10,99% взять 10% (условно). Итого, нужно-то 200 разделить на 10 — т.е. мы оценили размер скидки, примерно в 20 тыс. руб. (при определенном опыте расчет делается практически на автомате за 2-3 сек.).

Точный расчет : 197*10,99/100 = 21,65 тыс. руб.

Вариант 2: используем калькулятор телефона на Андроид

Когда результат нужен более точный, можно воспользоваться калькулятором на телефоне (в статье ниже приведу скрины с Андроида). Пользоваться им достаточно просто.

Например, вам нужно найти 30% от числа 900. Как это сделать?

Да достаточно просто:

  • открыть калькулятор;
  • написать 30%900 (естественно, процент и число может быть отличными);
  • обратите внимание, что внизу под вашим написанным «уравнением» вы увидите число 270 — это и есть 30% от 900.

Ниже представлен более сложный пример. Нашли 17,39% от числа 393 675 (результат 68460, 08).

еще один пример

Если вам нужно, например, от 30 000 отнять 10% и узнать сколько это будет, то вы можете так это и написать (кстати, 10% от 30 000 — это 3000). Таким образом, если от 30 000 отнять 3000 — будет 27000 (что и показал калькулятор).

От числа отнимаем 10% (еще один пример)

В общем-то, весьма удобный инструмент, когда нужно просчитать 2-3 числа и получить точные результаты, вплоть до десятых/сотых.

Вариант 3: считаем процент от числа (суть расчета + золотое правило)

Не всегда и не везде можно округлять числа и высчитывать проценты в уме. Причем, иногда требуется не только получить какой-то точный результат, но и понять саму «суть расчета» (например, чтобы просчитать сотню/тысячу различных задачек в Excel).

В этих случаях рекомендую запомнить одно «золотое» правило столбика. Если вы поймете его — то без проблем сможете всегда решать задачки с процентами. И так.

Допустим нам необходимо найти 17,39% от числа 393 675. Решим эту простую задачку.

  1. сначала запишите на листочке число 393675 и напротив него напишите 100% (т.е. число, от которого мы пытаемся найти какой-то процент — считаем за 100%) ;
  2. далее под 100% напишите, тот процент, который хотите найти (т.е. 17,39 в нашем примере); под самим числом — поставьте «X» (т.е. то число, что нужно найти, см. скрин ниже). Здесь главное число писать под числом, проценты под процентами (и не путать между собой их)!

Записываем числа для расчета процентов

теперь смотрите как легко можно найти X: достаточно перемножить между собой исходное число с искомым процентом (правило диагонали: где известны два числа — их перемножаем) и разделить на 100. См. скрин ниже. Перемножить можно на калькуляторе (делов-то на 10-15 сек.).

Читайте так же:  Сколько стоит услуга пенсионного юриста

Видео (кликните для воспроизведения).

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

Крест на крест (считаем проценты)

Чтобы снять все точки на «Й», рассмотрю обратную задачу. Например, сколько процентов составляет число 30 000 от числа 393 675.

  1. сначала записываем столбиком также 393 675 и напротив него ставим 100%;
  2. далее под самим числом 393 675 пишем 30 000, а напротив него ставим X (т.е. то, что нам нужно найти);
  3. далее (30 000 * 100)/393675 и получаем 7,62 % (можете проверить ). Т.е. работает тоже правило: перемножаем крест на крест (т.е. там, где в диагонали известны два числа) и делим на оставшееся. Таким образом легко найти неизвестное.

Обратная задачка с процентами

Вариант 4: считаем проценты в Excel

Excel хорош тем, что позволяет производить достаточно объемные расчеты: можно одновременно просчитывать десятки самых различных таблиц, связав их между собой. Да и вообще, разве вручную просчитаешь проценты для десятков наименований товаров, например.

Ниже покажу парочку примеров, с которыми наиболее часто приходится сталкиваться.

Задачка первая. Есть два числа, например, цена покупки и продажи. Надо узнать разницу между этими двумя числами в процентах (насколько одно больше/меньше другого).

  1. Сначала оформляем все это в Excel в форме таблички (пример см. ниже: в моем случае будем считать проценты для столбика «Маржа» по цене покупки и цене продажи товара) ;

Как определить, насколько одно число больше другого в процентах

[3]

далее на всякий случай напомню, как узнать сколько процентов составляет одно число от другого (для примера взял первую сточку из таблицы выше) . Согласно простому «правилу» (о нем рассказывал чуть ранее в статье) получаем, что разница между этими числами 4,36%. См. скрин ниже.

Второе число составляет 104% от первого

теперь осталось записать эту формулу в Excel: =(C2/B2)*100 — 100 (см. скрин ниже). Задачка для первой строки решена — разница между ценой покупки и ценой продажи 4,36%.

для того, чтобы просчитать проценты для всех остальных строк — достаточно растянуть формулу (см. скрин ниже).

Формулу растянули — проценты посчитаны для всего столбца

Для более точного понимания, приведу еще один пример. Другая задачка: есть цена покупки и желаемый процент прибыли (допустим 10%). Как узнать цену продажи. Вроде бы все просто, но многие «спотыкаются».

  1. сначала также открываем Excel и заносим данные в табличку;

За какую цену продавать, если нужна маржа в 10%

далее нам нужно найти 10% от цены покупки (т.е. то число, на которое нужно увеличить цену покупки). Чтобы это сделать для первой строки таблицы, все по тому же правилу (см. скрин ниже) нужно: (3737*10)/100 = 373,7

Считаем, насколько одно число больше другого в процентах

Теперь можно оформить формулу для первой строки в Excel: =(B2*D2)/100 + B2 (см. скрин ниже). Т.е. сначала мы нашли сколько будет 10% от цены покупки, а затем прибавили к этому числу цену покупки. Вроде бы все просто и логично .

Пишем формулу для нашей задачи

ну и последний штрих: просто растягиваем формулу на остальные строки. Задачка решена!

Растягиваем формулу — задача решена

Дополнения по теме — всегда приветствуются.

Калькулятор процентов

Калькулятор процентов позволяет производить любые расчеты с процентами: нахождение процента от числа, сколько процентов составляет число «X» от числа «Y», прибавление процента к числу, вычитание процента из числа

Для расчета необходимо ввести данные в поля калькулятора, после нажать кнопку «Рассчитать» для получения результата.

Нахождение процента от числа. Для того чтобы найти процент от числа введите в первое поле значение процента, которое нужно найти. Во второе поле введите число, из которого нужно найти процент.

Сколько процентов составляет число «X» от числа «Y». В первое поле нужно ввести число, процент которого мы ищем. Во второе поле нужно ввести число, из которого мы будем находить процент первого числа.

Прибавление процента к числу. Чтобы прибавить процент к числу нужно в первое поле ввести значение процента, которое нужно прибавить. Во второе поле ввести число, к которому нужно прибавить процент.

Вычитание процента из числа. Для нахождения результата введите в первое поле число, из которого нужно вычесть процент. Во второе поле введите значение процента, которое нужно вычесть из числа.

Процент (лат. per cent — на сотню) — одна сотая доля. Обозначается знаком «%». Используется для обозначения доли чего-либо по отношению к целому. Принято считать что 100% = 1, исходя из этого 25% эквивалентно 0,25 или 25/100.

Пример. Для того чтобы вычислить процент от числа нужно в первом поле указать процент который требуется вычислить, например «20». Во втором поле нужно указать число из которого будет вычисляться процент, например «60». После ввода данных нажмите кнопку «Рассчитать», искомый результат «12».

6 способов посчитать проценты от суммы с калькулятором и без

Простейшие формулы помогут узнать, выгодны ли скидки, и не нарушить пропорцию классного рецепта.

1. Как посчитать проценты, разделив число на 100

Так вы найдёте числовой эквивалент 1%. Дальше всё зависит от вашей цели. Чтобы посчитать проценты от суммы, умножьте их на размер 1%. Чтобы перевести число в проценты, разделите его на размер 1%.

Вы заходите в супермаркет и видите акцию на кофе. Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

2. Как посчитать проценты, разделив число на 10

Этот способ похож на предыдущий, но считать с его помощью гораздо быстрее. Но только если речь идёт о процентах, кратных пяти.

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Допустим, вы кладёте на депозит 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

3. Как посчитать проценты, составив пропорцию

Составлять пропорции — одно из наиболее полезных умений, которому вас научили в школе. С его помощью можно посчитать любые проценты. Выглядит пропорция так:

сумма, составляющая 100% : 100% = часть суммы : доля в процентном соотношении.

Или можно записать её так: a : b = c : d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

Для примера вычислений используем рецепт быстрого брауни. Вы хотите его приготовить и купили подходящую плитку шоколада массой 90 г, но не удержались и откусили кусочек-другой. Теперь у вас только 70 г шоколада, и вам нужно узнать, сколько масла положить вместо 200 г.

Сначала вычисляем процентную долю оставшегося шоколада.

90 г : 100% = 70 г : Х, где Х — масса оставшегося шоколада.

Х = 70 × 100 / 90 = 77,7%.

Теперь составляем пропорцию, чтобы выяснить, сколько масла нам нужно:

200 г : 100% = Х : 77,7%, где Х — нужное количество масла.

Х = 77,7 × 200 / 100 = 155,4.

Следовательно, в тесто нужно положить примерно 155 г масла.

Пропорция подойдёт и для расчёта выгодности скидок. Например, вы видите блузку за 1 499 рублей со скидкой 13%.

Сначала узнайте, сколько стоит блузка в процентах. Для этого отнимите 13 от 100 и получите 87%.

Составьте пропорцию: 1 499 : 100 = Х : 87.

Х = 87 × 1 499 / 100.

Заплатите 1 304,13 рубля и носите блузку с удовольствием.

4. Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% — 1/5, то есть нужно делить число на 5;
  • 25% — 1/4;
  • 50% — 1/2;
  • 12,5% — 1/8;
  • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

Вы нашли брюки за 2 400 рублей со скидкой 25%, но у вас в кошельке только 2 000 рублей. Чтобы узнать, хватит ли денег на обновку, проведите серию несложных вычислений:

100% — 25% = 75% — стоимость брюк в процентах от первоначальной цены после применения скидки.

2 400 / 4 × 3 = 1 800. Именно столько рублей стоят брюки.

5. Как посчитать проценты с помощью калькулятора

Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

  • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
  • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
  • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.

6. Как посчитать проценты с помощью онлайн-сервисов

Не все проценты можно посчитать в уме и даже на калькуляторе. Если речь идёт о доходности вклада, переплатах по ипотеке или налогах, требуются сложные формулы. Они учтены в некоторых онлайн-сервисах.

Planetcalc

На сайте собраны разные калькуляторы, которые высчитывают не только проценты. Здесь есть сервисы для кредиторов, инвесторов, предпринимателей и всех тех, кто не любит считать в уме.

Калькулятор — справочный портал

Ещё один сервис с калькуляторами на любой вкус.

Каталог онлайн-калькуляторов, 60 из которых предназначены для подсчёта финансов. Можно вычислить налоги и пени, размер субсидии на ЖКУ и многое другое.

Источники


  1. CD-ROM. Юридические науки. Диск 2. Шпаргалки для студентов. — Москва: РГГУ, 2013. — 418 c.

  2. Султанова, А. Н. Организация юридической службы на предприятии / А.Н. Султанова. — М.: Дашков и Ко, Наука-Спектр, 2013. — 320 c.

  3. Оксамытный, В.В. Теория государства и права / В.В. Оксамытный. — М.: ИМПЭ-ПАБЛИШ, 2004. — 563 c.
  4. Исследования по истории и теории развития авиационной и ракетно-космической науки и техники: моногр. . — М.: Наука, 2011. — 264 c.
  5. Жалинский, А. Э. Введение в специальность «Юриспруденция». Профессиональная деятельность юриста. Учебник / А.Э. Жалинский. — М.: Проспект, 2015. — 362 c.
Как определить процент от числа формула
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here